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Nonlinear autonomous dynamical systems with a homoclinic tangenc 3, to a 
periodic orbit are investigated. We study the bifurcation sequences of the mixed- 
mode oscillations generated by the homoclinicity, which are shown to belong to 
two different types, depending on the nature of the Liapunov numbers of the 
basic periodic orbit. A detailed numerical analysis is carried out to show how 
the existence of a tangent homoclinic orbit allows us to understand in a quan- 
titative way a particular and regular sequence of cool flame-ignition oscillations 
observed in a thermokinetic model of hydrocarbon oxidation. Chaotic cool 
flame oscillations are also observed in the same model. When the control 
parameter crosses a critical value, this chaotic set of trajectories becomes 
globally unstable and forms a Cantor-like hyperbolic repellor, and the ignition 
mechanism generates a homoclinic tangenc3' to the Cantor set (~['trq]ectories. The 
complex bifurcation diagram may be globally reconstructed from a one-dimen- 
sional dynamical system, thanks to the strong contractivity of thermokinetics. It 
is found that a symbolic dynamics with three symbols is necessary to classify the 
periodic windows of the complex bifurcation sequence observed numerically in 
this system. 

KEY WORDS: Homoclinic tangency; bifurcation theory; periodic attractors; 
chaos; hyperbolic repellor; symbolic dynamics; chemical thermokinetics; cool 
flame-ignition oscillations. 

1. I N T R O D U C T I O N  

R e c e n t  a d v a n c e s  in  t he  s t u d y  of  t he  t i m e  e v o l u t i o n  of  c h e m i c a l  s y s t e m s  far  

f r o m  e q u i l i b r i u m  revea l  t he  e x i s t e n c e  of  c o m p l e x  d y n a m i c a l  b e h a v i o r s  s u c h  

as  b i f u r c a t i o n  s e q u e n c e s  of  m i x e d - m o d e  o s c i l l a t i o n s  as  wel l  as c h a o t i c  

b e h a v i o r s  w h i c h  a re  in t r ins ic  to  t he  s y s t e m  a n d  a r i se  f r o m  the  n o n l i n e a r  
c h a r a c t e r  of  t he  k ine t i cs .  (1 71 
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Many classes of chemical reactions and, in particular, those involved 
in combustion present a very complex kinetics with a multitude of inter- 
mediate steps having an autocatalytic character. Moreover, time scales 
ranging from 10 .6 to 103sec are commonly realized in laboratory 
experiments. It is remarkable that, despite the considerable diversity of 
macroscopic dynamical regimes presented by a chemical system far from 
equilibrium, the bifurcation pattern of these nonequilibrium behaviors can 
be modeled by suitably parametrized nonlinear dynamical systems invol- 
ving a small number of variables. For instance, one-dimensional mappings 
on the interval have been shown by Simoyi et al. to account for the 
U-sequence experimentally observed in the Belousov-Zhabotinskii (BZ) 
reaction./8) Similarly, Pikovsky has accounted for the alternated 
periodic chaotic sequence in the BZ reaction, using a one-dimensional 
map. (9) 

Despite the great interest of such discoveries, it is desirable to establish 
whenever possible a close connection between the abstract mathematical 
model giving rise to the observed bifurcation sequence and the underlying 
(continuous-time) flow describing the kinetics of the real-world system. The 
investigation of complex bifurcations based on such a connection for a 
class of kinetic mechanism of relevance in both the BZ reaction and in 
combustion is the principal goal of the present work. 

As it will turn out, the dynamical systems relevant for these purposes 
are systems possessing a tangent homoclinic orbit. This class enables one to 
comprehend in a very general way one type of universal behavior arising in 
chemical reactions out of equilibrium, namely regular bifurcation sequences 
of mixed-mode oscillations. This behavior occurs in several systems, such 
as the BZ reaction, (2'4) heterogeneous catalysis, (1~ and combustion. (6'7) 

A homoclinic system displays in phase space a bounded domain con- 
taining a fixed point, a periodic orbit, or even a more complex invariant 
set, such as a torus or a quasirandom set of trajectories (see Fig. 1). In each 
case, the invariant set must be of the saddle type, so that trajectories may 
reach the neighborhood of the basic invariant set along the stable manifold, 
stay there for a certain time, and escape along the unstable manifold. A 
second important property of homoclinic systems is that the flow must 
reinject the outgoing trajectories back into the invariant set. This will be 
the case if there exists a homoclinic orbit associated to the invariant set, i.e., 
an orbit converging to this latter in both the past and the future. Such a 
scheme was called principle ofreinjection by R6ssler, ~11'12) who showed how 
a reinjection may induce complex dynamical behaviors. As stressed 
previously, homoclinic orbits are at the origin of chaotic behaviors. (13 15) In 
addition, they generate highly regular bifurcation sequences of mixed-mode 
oscillations. (16"17) We believe that a reinjection scheme is likely to play an 
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Fig. 1. Various types of homoclinicity: (a) to a saddle fixed point; (b) to a periodic orbit; (c) 
to a quasirandom invariant set, such as a Smale horseshoe; (d) to a torus. The dimension of 
the phase space of the dynamical system of the lowest possible dimension and the stability 
spectrum of the basic invariant set are written down. 

important  role in chemical kinetics because of the different time scales that 
may be involved in the reaction steps. If the system starts near a fixed point 
or a periodic orbit, one variable may slowly drift up to a critical value 
where a rapid jump may occur. The hyperbolic character of the basic 
invariant set and the existence of a homoclinic loop are clearly essential in 
this scheme. As a matter  of fact, recent experiments by Argoul et al. (19) 

provide strong evidence of the role of homoclinic orbits in the dynamics of 
the BZ reaction. 

In Sections 2-4 we study the homoclinic orbit associated to a periodic 

orbit (or cycle) in three variable dynamical systems, thus extending 
previous investigations on homoclinic orbits associated to a fixed 
point. ~15'171 By assumption, the basic cycle is of the saddle type, so that two 
invariant surfaces, the stable and unstable manifolds, emanate from the 
basic cycle in the phase space, as shown in Fig. 2. The former (resp. the 
latter) contains all the trajectories converging to the cycle in the future 
(resp. the past). Both manifolds intersect along a trajectory called a 
homoclinic orbit. Such an orbit converges to the basic cycle in the past and 
the future because it belongs to the stable and the unstable manifolds. 

Typically, the intersection of both manifolds is transverse. As a result, 
the homoclinic orbit is structurally stable, i.e., it deforms continuously 
without disappearing as the control parameter  # of the flow is changed, as 
shown in Fig. 3a. 

Clearly, such a homoclinic orbit cannot generate bifurcation 
phenomena until a supplementary condition is fulfilled, namely that the 
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Fig. 2. Geometry of the basic periodic orbit C, its stable and unstable manifolds W, and 
W,, one homoclinic orbit H, and the plane of section 7~ in the phase space. O is the intersec- 
tion of C with ~z. 
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Fig. 3. (a) Homoclinic intersection H of the stable Ws and unstable W, manifolds for two 
parameter values ( ) ,u and (- - ) / .  (b) Homoclinic tangency at HT of both manifolds. When 
p decreases, homoclinic orbits H l and H2 coalesce at # = 0 and disappear when g < 0. 
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stable manifold becomes tangent to the unstable one at a critical parameter  
value chosen for convenience to be # = 0. Such a configuration is called a 
homocl in ic  tangency  to a periodic orbit (see Fig. 3b). A homoclinic 
tangency is structurally unstable because a small perturbation of the 
parameter  destroys it. Systems with homoclinic tangency are thus codimen- 
sion 1 systems, since they occupy a surface of dimension p - 1  in a 
p-dimensional parameter  space. 2 

Another mechanism leading to complex dynamical behaviors such as 
chaos and based also on a reinjection principle is the intermittency of 
Pomeau and Manneville. (21) The critical intermittent systems are also 
codimension 1 systems with a reinjection loop associated to a limit cycle. 
Here, however, the basic cycle is at a critical situation of codimension 1 
bifurcation with some Liapunov numbers on the unit circle and the reinjec- 
tion is arbitrary. On the contrary, in the systems with a homoclinic 
tangency associated to a cycle, it is the reinjection mapping that is of 
codimension 1, because it produces the tangency between the stable and 
the unstable manifolds, while the Liapunov numbers of the basic cycle 
remain away from the unit circle. As a consequence of the marginality of 
the basic cycle in the intermittent systems, the trajectories leave the cycle as 
1/t v for t ~ - o o  (with v = 1 for type I intermittency, v = 1/2 for type II, and 
v = 1/2 or 1 for type III) ,  while the escape from the cycle in systems with a 
homoclinic tangency behaves like e ~' for t ~ - o o  (with c~ > 0). 

In Section 2, we review analytic results on bifurcation sequences near a 
homoclinic tangency to a basic cycle. The type of the bifurcation sequence 
is shown to depend strongly on the stability properties of the basic cycle. 

In Sections 3 and 4, a homoclinic tangency to a periodic orbit is 
revealed in chemical kinetics by a detailed analysis of mixed-mode 
oscillations in a thermokinetic model. The importance of this model lies in 
the fact that it is three-dimensional, which is the minimal dimension where 
complex dynamics such as chaotic behaviors are possible. Nevertheless, this 
model is realistic because it is bimolecular, obeys the principles of chemical 
kinetics, and contains qualitatively all the behaviors observed in current 
experiments on gaseous-phase hydrocarbon oxidation.I6'7t In particular, the 
model describes not only the cool flame oscillations with small temperature 
variations, but also the ignition oscillations, which reach higher tem- 
peratures. Mixed-mode oscillations where cool flame peaks are mixed with 
ignition peaks are present in the model and they will indeed be a focus of 
attention in this paper. 

2 The homoclinic orbit associated to a fixed point of the saddle type in three-variable systems 
is structurally unstable, so that we may also regard these systems as presenting a homoclinic 
tangency. In fact, in these systems, the two-dimensional unstable (resp. stable) manifold 
literally contains the one-dimensional stable (resp. unstable) one. 
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Systems with homoclinic orbits to a Shil'nikov saddle focus or a 
basic cycle are known to have an invariant set which is a Cantor set of 
trajectories whose dynamics is in correspondence with a symbolic 
dynamics. (~4'2~ Tangency between the stable and unstable manifolds of 
an invariant set of Cantor type may occur, as remarked by Newhouse in 
this context. (23'33) In such a scheme, a first homoclinic tangency to a fixed 
point or a basic cycle generates a Cantor-like invariant set, which sustains 
in turn secondary homoclinic tangencies. 

Nevertheless, the invariant set of Cantor type may be a simple Smale 
horseshoe (24) originating from a scenario different from the first homoclinic 
tangency, for instance, a simple Feigenbaum period doubling cascade. If a 
reinjection mechanism exists in the system, the unstable manifolds of this 
Smale horseshoe may still have tangencies with its stable manifolds. These 
features distinguish our scenario at the origin of a homoclinic tangency to a 
Cantor set of trajectories from the previously investigated scenarioJ 23'33) 

In Section 5, we show how such a homoclinic tangency to a Cantor- 
like invariant set occurs in the thermokinetic model. The Smale horseshoe 
is generated only from the cool flame oscillations. As the thermokinetic 
reinjection mechanism in the ignition regime is strongly contractive, the 
periodic attractors with mixed ignition and cool flame peaks born via the 
homoclinic reinjection are very abundant and dominate the time behaviors. 
Chaotic behaviors with ignition become unobservable numerically even at 
the high precision we used. Thus, the most interesting behavior of the 
system is the complex bifurcation sequence of mixed-mode periodic attrac- 
tors. In Section5, we give the theoretical elements for a global 
understanding (up to a given precision) of the pattern of complex bifur- 
cations observed in the model. 

In Section 6, the conditions of existence of the mixed-mode oscillations 
with respect to chaotic behaviors predicted by the theory are compared. 
Some conclusions on modeling of complex oscillations in thermokinetics 
are drawn. 

2. H O M O C L I N I C  T A N G E N C Y  TO A PERIODIC ORBIT:  
GENERAL RESULTS 

Homoclinic tangencies to a periodic solution in autonomous or 
periodically forced differential equation systems have been studied by 
several authors. (22'33'34~ In particular, it is known that these systems possess 
a quasirandom subdynamics, as proved by Gavrilov and Shil'nikov. (22) 
Furthermore, Newhouse showed that systems with infinitely many sinks 
exist near homoclinic tangencies. (33'34'41) These fundamental results have 
generated much interest in view of the understanding of strange attractors. 
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In the present paper, we shall consider only the simplest periodic attrac- 
tors, which are generated near the homoclinic tangency. As explained in the 
introduction, in concrete physicochemical systems, the flow may be so con- 
tractive that the chaotic behaviors disappear. The simplest periodic attrac- 
tors are then dominating and undergo nontrivial bifurcations. Such a 
phenomenon is more likely to occur in autonomous systems than in 
periodically forced systems, because these latter systems are equivalent to a 
single two-dimensional (2D) mapping, whereas several successive 2D map- 
pings of wildly different contractivities could be necessary to understand a 
3D flow. 

To appreciate better the effect of flow contraction on the bifurcation 
diagram of periodic attractors, we shall first construct them in the case 
where the flow is regular, i.e., not specially contractive, and next in the 
limiting case where the flow along the homoclinic loop is infinitely contrac- 
ting. 

2.1. The Flow Contains a Regular Homoclinic Mapping 

Let the 3D differential equation system 

~: = V~,(X) (2. t ) 

possess, at /~ = O, a homoclinic tangency to a periodic orbit C of period rc  
and of eigenvalues 2.,  2,. satisfying 3 

IL, I < 1 < I~.,I < 1//~,~1 (2.2) 

It is well known (22'34'4~ that solutions with period increasing like nr c are 
generated in successive saddle-node bifurcations at critical parameter 
values (/~)~, accumulating like 

lim ( # ) ~ ' + ' - ( / ~ ) ' - 1  (2.3) 

at the homoclinic tangency # =  0. Between each saddle-node bifurcation 
and a following period doubling, there exists a periodic attractor. 

Since the flow preserves the orientation in the phase space N3, either 

2,, 2, > 0 (type I) (2.4) 
o r  

)o,, 2, < 0 (type II) (2.5) 

3 A system with 12's2'.1 > 1 can always be t ransformed into a system satisfying these condit ions 
by reversing the time t --+ - t :  2, = 1/2',, 2 .  = 1/2',. 
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Fig. 4. The invariant stable and unstable manifolds of a periodic orbit of type II with 2,, 
;t~ < 0 form M6bius strips. 

In the type I, all the periodic windows occur on the same side of the 
homoclinic tangency. In the type II, when the invariant manifolds form 
M6bius strips (see Fig. 4), all the windows of even period lie on one side 
and all those of odd period on the other side. 

In higher dimensional phase space, the constraints from the preser- 
vation of the orientation are less restrictive, so that all the different com- 
binations of signs for 2sl and 2,1, the stable and unstable eigenvalues the 
closest to the unit circle, are possible. 

Our  purpose here is to construct the bifurcation diagrams of these 
periodic windows born at parameter  values (#)', to be compared with the 
bifurcation diagrams of the thermokinetic model constructed numerically 
in the next sections. 

Let us consider a Poincar6 section plane rc transverse to the basic 
periodic orbit C as shown in Fig. 2. By Sternberg's linearization 
theorem, (35/ the curvilinear coordinates can be chosen in the section plane 
so that the map To induced by the flow near the cycle C is linear and that 
the stable and unstable manifolds lie on the x axis and the y axis, respec- 
tively, as shown in Fig. 5. The definition domain ~0 of To is restricted to a 
small neighborhood around C, 

I 
x;  = 2s(#) Xo (2.6) 

T 0" % --* a~ y~) = 2,(#) Yo (2.7) 

t; = t o + ro(X o, Yo; #) (2.8) 

Equation (2.8) governs the return times in the section plane. If the point 
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Fig. 5. Geometry of the stable and unstable manifolds in the neighborhood of the basic 
periodic orbit C in the section plane rc at the homoclinic tangency # - 0 in the case 2,, 2,, > 0. 
Here ao (resp. a;)  is the definition (resp. range) domain of the map T o ; Z  o (resp. ~V'l) is the 
definition (resp. range) domain of T~; and xff is the intersection point of the tangent 
homoclinic orbit in Z~, with yr that in Zo. 

(Xo, Yo) is near the periodic orbit, the return time is close to the period, so 
that to simplify we assume that 

to(X0, Yo; #) = re(#)  (2.9) 

The homoclinic tangency produces the geometry of the stable and 
unstable manifolds of C depicted in Fig. 5. When # =0 ,  the tangent 
homoclinic orbit crosses the section plane at the point (0, y*)  on the local 
unstable manifold W, and at the point (x*, 0) on the local stable manifold 
W,, where the tangency with the global unstable manifold is displayed. A 
map T I is thus induced by the flow from a vicinity X 0 of W,, to a vicinity 
Z~ of W~, which models the reinjection mechanism to the basic cycle C. 

A map T~ capturing these features can be cast into the form 

T l  " Z o - - ~  X 1 

i x~ = x**(~)- a(~)[yo- y~(~)3 (2.~0) 
y, --- b(#) ,u + c(/,) x o + �89 [y  o - y ~ ( ] , / ) ]  2 (2.1 1) 

tl = to + "C~(X0, Y0; ~) (2.12) 
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The quadratic term in (2.11) reproduces a generic quadratic tangency in 
agreement with the given geometry. The term in (Yo-Y~) is absent from 
(2.11 ) because the tangency is required at # = 0. The term linear in x 0 is not 
essential in (2.10) because it leads only to shear distortion parallel to the 
unstable manifold in Z" 1. The higher order terms are unessential. 

Two structurally stable homoclinic orbits exist when bl~/d<O. They 
coalesce at the tangency # = 0 to disappear when bl~/d> 0 (cf. Fig. 3b). 

In an analytic system (2.1), such an invertible representation of the 
map T l is possible only in a small neighborhood around the tangent 
homoclinic orbit. Away from Z'0, the nonlinearity of the flow may deform 
considerably the shape of the invariant manifolds. Since T~ is orientation- 
preserving in the phase space ~3, its Jacobian satisfies 

0(Xl' Yl )/8(Xo' YO) = a c  > 0 (2.13) 

The function r~ is the return time in the plane ~ during the map T~ and 
depends in general on the initial conditions in autonomous systems. We 
shall choose here a function linear in the coordinates 

z,(Xo, Yo) = ~IH + tl~xo + tb.(yo - y~) (2.14) 

for the illustrative construction of the bifurcation diagrams. In the 
following, we assume for simplicity that the functions ~c, 2~, 2~, a, c, d, x*, 
y~, and r j are independent of the parameter/~. 

The simplest periodic orbits in the system are the fixed points Pn of the 
mapping T~ oT~. They are the solutions (Xo, Yo) confined in So of the 
equations 

Xo-- ()o,.)" Ix*  - a ( y  o - y * ) ] ,  +--+o~ 0 (2.15) 

b. l*= - � 8 9  Y * ) 2 - c 2 ~ [ x * - a ( y o -  y~)]  +(2u) " Yo (2.16) 

with the period 

z(P~) = n~ + rl(Xo, Yo) (2.17) 

Equations (2.15)-(2.17) generate a sequence of curves parametrized by Yo 
in the planes (/~, Xo) and (t~,z(P,,)), which constitute our bifurcation 
diagrams drawn schematically in Fig. 6 in the case d, )~u, ,~. > 0. In the 
other cases, the bifurcation diagrams of the period z(P,) versus the control 
parameter # are sketched in Fig. 7. 

The fold point of the curves is the locus 

Yo " 0(2,, ), n = 1, 2, 3 .... (2.18) (~), = b-~ + o(L) + -~ 
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Fig. 6. The schematic bifurcation diagrams of the periodic orbits Pn of (a) the x 0 coordinate 
and (b) the period T(Pn), versus the parameter /~. The integer associated to each family of 
periodic orbits is the integer n of Pn. The 7,. is the period of the basic periodic orbit C. ( �9 ) A 
tangent bifurcation; (�9 a period doubling bifurcation. (--) A stable-node periodic orbit; (- -) 
a saddle periodic orbit. (,) A double-circuit homoclinic tangency with its characteristic integer 
m. The diagrams correspond to the case where all d, lb., b, y*, x*, a, c, ).,, and 2~ are positive. 
The integer followed by H is the number of single-circuit transverse homoclinic orbits on the 
corresponding side of # = 0. 

where  the  s a d d l e - n o d e  b i fu r ca t i on  occurs .  T h e  s table  n o d e  b o r n  at (~t)~, 

b e c o m e s  a sadd le  af ter  a p e r i o d  d o u b l i n g  h a p p e n i n g  at the  p a r a m e t e r  va lue  
(#)~, such  tha t  

(~)~, _ (# )~  = 2 ; ~ , ,  + o ~ " ;  "~ 
s ~u 17 n = 1 , 2 , 3  .... (2.19) 

wh ich  is the  w id th  of  the  pe r iod i c  w i n d o w  of  type  P,,. 

822/48/1-2-11 
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Fig. 7. The schematic bifurcation diagrams of the periodic orbit P ,  of the period T(P~) 
versus the parameter/~ as well as the corresponding diagrams of the periodic windows, tlv, b, 
y~, x*,  a, and c are assumed positive. The same notat ions as in Fig. 6 are used. 

When the map T~ is regular, as it is the case if its Jacobian (2.13) is 
not zero, the bifurcation diagram presents a complexity which is well 
illustrated by the existence of double-circuit homoclinic tangencies similar 
to those existing in systems with a homoclinic orbit associated to a 
Shil'nikov saddle focus. (25) They occur at parameter values 

( # ) ' L = - ~ 2  m x * - a e  ~ +O(2m2 m/2) (2.20) 
\d 

~= + , - ;  m =  1,2, 3 .... 

if y~/dit m is positive. Each pair _+_ of critical parameter values is represented 
by a star in Figs. 6 and 7. The existence of these double-circuit homoclinic 
tangencies triggers an inductive reasoning that shows that the bifurcation 
diagram is complex and contains a hierarchy of smaller and smaller 
periodic windows. (25) 

However, when the system is strongly contractive, these complex 
bifurcations and the related chaotic time behaviors may disappear and only 
the periodic orbits Pn remain in the bifurcation diagram, as we show in the 
next subsection. 
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2.2. The  F l o w  Is S t r o n g l y  C o n t r a c t i n g  

In chemical kinetics, the flow may be strongly contracting due to the 
hierarchy of the time scales of the various reaction rates. All the trajectories 
with different initial conditions are then brought together by the flow. 

As a consequence, the map T~ will have the regular form (2.10)-(2.12) 
only in an extremely small region in the phase space, because T~ will map 
all the trajectories out of the domain *0 into a very small region of Z" 1 
which is undistinguishable from a point up to a given precision. For such 
systems, we should consider the limit case where T 1 is infinitely contractive 
to a single point of Z" 1 independently of the initial condition and has the 
following form: 

I 
X = X ~ ( ~ )  

TI"Z'o--*Z~I Y l=b( / J ) ' #  (2.21) 

tl = to+ r~(Xo, Yo,/~) 

with (Xo, Yo)e Z~0 . In this limit case, a continuum of homoclinic orbits 
forms the homoclinic tangency at # = 0, whereas no homoclinic orbit exists 
if # # 0 .  

Since the whole dynamics is mapped into a single point by T.,  all the 
possible trajectories of the system coalesce on a single superstable periodic 
orbit. The only possible trajectories are then the periodic orbits P,,, the 
basic cycle C, and the main homoclinic orbit P~ .  

Proceeding as before with the form (2.6)-(2.8) of the map To, but 
keeping here the dependence of the parameter /x, one has that the P,, 
oscillations are fixed points of T~ o T{~ and can be obtained as solutions of 
the equations 

~(P,,) = n~c(#) + ~i(Xo, Yo;/~) 

(2.22) 

(2.23) 

(2.24) 

Here again the type of the basic periodic orbit C characterizes the ordering 
of the periodic windows P,,, as shown in Fig. 8. Of course, if the system 

where (Xo, Yo) belongs to 2o(/1 ). The return time function plays a very 
important role because it determines the shape of the bifurcation diagram 
in the plane (#, r(P,,)). 

The periodic trajectories are here superstable with two vanishing 
Liapunov numbers 

A+(P, , )=A (P,,) = 0 (2.25) 
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T y p e  II : .3. .< 0 . . . . . . . .  1 . . . . . .  = 

0 
Fig. 8. Ordering of the periodic windows P ,  around a homoclinic tangency at # = 0 when 

the flow is infinitely contracting. The integer is n of pn. 

(2.1) is analytic, the map TI is not infinitely, but only strongly contractive 
and the set of quasirandom trajectories predicted by Gavrilov and 
Shil'nikov (22) is then always present, albeit in an extremely small region in 
the phase space. Such chaotic behaviors will not have a real importance in 
the natural system if the internal noise level due to thermodynamic or 
environmental fluctuations is higher than the amplitudes of chaotic 
variations. 

3. T H E  T H E R M O K I N E T I C  M O D E L  

We illustrate the role of homoclinicity in the understanding of the 
sequence of bifurcations of mixed-mode oscillations by a detailed analysis 
of a thermokinetic model of hydrocarbon oxidation in the gaseous phase. 

3 . 1 .  T h e  M o d e l  

The combustion in the acetaldehyde-oxygen system in a well-stirred 
flow reactor has been the object of detailed experiments, which have 
revealed the existence of various types of periodic time evolutions: cool 
flame oscillation, ignition oscillation, and several mixed-mode 
oscillations. {6) The thermokinetic model of hydrocarbon oxidation presen- 
ted in Ref. 7 reproduces all these time behaviors qualitatively. The reaction 
scheme adopted in the model is as follows: 

1. Initiation: 

Y ~ X  (3.1) 

2. Branching: 

X+Y ~ 2X+~2 (3.2) 

X ~ 2X+h3 (3.3) 
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3. Termination: 
~ 

X ~ $1 +h4 (3.4) 

x ~ s2 (3.5) 

where Y is a molecule of the fuel or the oxygen and X is the chain carrier. 
Reactions (3.2)-(3.4) are exothermic. 

As noted in Ref. 7, complex dynamics as mixed-mode oscillations can 
only appear  if the number  of kinetic variables is at least three. They are 
here the concentrations Y and Y and the temperature 7", which satisfy the 
following mass and energy balance equations: 

dX 
d--7 = k l ( U )  Y4-  k2(u) XY4- [ ' k 3 ( u  ) - k 4 ( u  ) - k 5 - 1 ] Y (3.6) 

dY 
d-T= - E k e ( u ) +  1] Y-k2(u )  X Y +  1 (3.7) 

du 
dt = Eh2k2(u) Y+ h3k3(u) 4- h4k4(u)] X -  kru (3.8) 

where u = ( T - T o ) / T o  is the relative temperature with respect to the 
ambient temperature To. The reaction rates k~ to k 4 depend on the relative 
temperature as shown in Table I. The unit of the concentrations X and Y 
chosen is scaled to the inflow concentration of fuel and oxygen, assumed to 
be equal. The unit of time t is the residence time in the reactor. The term 
kru represents a Newtonian heat loss. t32) The reactant pressure P is chosen 
near 553 mm Hg and the ambient temperature To is the bifurcation 
parameter. 

Table I. React ion Rates and Var ious Constants for  the 
Thermokinet ic  React ion (3 .1 ) - ( 3 .5 )  ~ 

ka =4AiNo e e,/(l +u) Al = 1 .6x  101~ E l = 2 4  h'i = 0  
k2=2A2No e-eU(l+u) A2 = 7.4 x 1012 E 2 = 2 5  h 2 = 9 2  
k3=4A3No e-e3/(l+") A 3 = l . 3 8 x 1 0 8  E 3 = 7  h 3 = 4  
k4 = 4A4No e-e4/(l + ~) A 4 = 7.8 x 101~ E 4 = 16 h4 = 20 
ks=A5N~/z A s = 3 . 3 x l 0 3  Es=O , ~ s = 0  
k r = ( 4 x 3 . 6 8 x 1 0  4 / l l ) ( c m  3 m o l e ) x N o  1 
N O = P/RT o with P/R = 560/(760 x 83.144) ( c m - 3  mole  K)  
ej = EHRTo, j =  1, 2, 3, 4, with  R = 1.987 (cal mole  i K - I )  
h j= ,~H[22  ( ca lmo le  -1 K 1)x  To] 

a Uni t s  of AI-A 4 are cm 3 mole  1; of  As,  cm 3/2 mole - l / z ;  of E's a n d / ? s ,  kcal mole  1. 
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1,0  
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5 

Fig. 9. (a) Doubled cool flame oscillation at To = 590.16; (b) Chaotic cool flame oscillation 
at T0 = 590.13. 

AS the ambient temperature To is decreased, five regions of different 
dynamical behaviors are observedlTl: 

Region V. A stable focus steady state at moderately high tem- 
perature undergoes a Hopf  bifurcation at 

(To)~v_v = 623 K (3.9) 

and gives birth to the following behavior: 

Region IV. Cool flame oscillations arise, which are periodic and 
smooth. The temperature variation in cool flames remains bounded below 
400 K. The cool flame limit cycle becomes unstable by a period doubling at 

(To) ~ = 590.24273 K (3.10) 
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Fig. 9 (continued) 

An example of doubly periodic cool flame oscillations is shown in Fig. 9a. 
Let us remark that the variation in the peak amplitude in the doubling is 
small. As the ambient temperature To still decreases, cool flame oscillations 
undergo a period doubling cascade, (3~ leading to chaotic cool .flame 
oscillations. An example is shown in Fig. 9b. Next, the amplitude of the 
cool flame oscillations reaches a critical threshold where ignition starts, as 
explained in Section 5. 

Region IlL So, below the critical temperature 

(To)~iHv = 590.1295 K (3.11 ) 

mixed-mode periodic oscillations occur. They are composed of several cool 
flame peaks of temperature variation of about 400 K separated by an 
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ignition peak where the temperature rises up to several thousand kelvin 
degrees. Figure 13 displays an example. The number of cool flame peaks 
changes in an apparently irregular sequence of bifurcations as the ambient 
temperature To decreases. Only periodic mixed-mode oscillations were 
observed numerically in the model with certainty. They are presented in 
Table III. 

According to the analysis to be presented below, we can understand 
the mechanism at the origin of this complex bifurcation sequence as 
follows. When the chaotic cool flame oscillations are generated by bifur- 
cations in region IV, a Smale horseshoe of cool flame oscillations is 
created. In region III, this Smale horseshoe is a hyperbolic repeller. The 
high fuel consumption during ignition causes the reinjection inthe vicinity 
of the hyperbolic repeller of cool flames. So a homoclinic tangency to the 
Cantor set of cool flame trajectories exists, which explains globally the 
sequence of bifurcations, as we show in Section 5. 

Section 4 is concerned with the low-ambient-temperature part of the 
sequence, where at Ton, there is an example of homoclinic tangency to a 
periodic orbit. This latter is the unstable cool flame orbit of lowest period, 
which was stable in region IV for To > (T0)). A regular sequence of mixed- 
mode oscillations is organized around the homoclinic tangency. The 
sequence of mixed-mode oscillations ends at 

(To)frill = 585.8 K (3.12) 

Region I/. Below this temperature there exist relaxation oscillations 
of simple ignition, which disappear at 

( T o ) i _ i i  = 563 K (3.13) 

Region I. The attractor is then a stable node steady state at low 
temperature. 

3.2. Numerical  Computa t ion  of the Periodic Orbits 

The periodic orbits, their stability, and their bifurcation loci in the 
parameter space are computed by Newton's method of the tangent 
developed by Sparrow. (26) 

Sinai and Vul (27) and De Gregorio ~281 argued how a rigorous proof of 
existence of a periodic orbit can be provided by such a method. 

Let us denote by 

X, = g0(to; Xo, #) (3.14) 
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the mapping generated by the flow (2.1) from the initial condition Xo 
during a time to. The system (2.1) admits a trajectory of period r* through 
a point X* in the section plane a .  X = b if these values are solutions of 

X* = d0(z*; X*,/~) with a . X * = b  (3.15) 

If approximations X o and ro to these values are known, they differ from the 
true values by corrections 

X* = X o + d X  o, ~ * = r o + &  (3.16) 

Introducing (3.16) into Eq. (3.15), dropping the terms nonlinear in the 
corrections, and using (3.14) and the fact that 

a_~ (~0; Xo, #)= F.(X,) 
at 

we obtain the equations satisfied by the corrections: 

I -  ~--~ (%; X o, #) dX - F~,(X,) dr =X~ - X o  

a . d X = O  

(3.17) 

which form an inhomogeneous linear system of four equations with four 
unknown quantities. Given the approximate elements X 0, ro of the periodic 
orbit, we need to integrate the differential equation system (2.1) with the 
linearized system 

~r F,,(X(O) 

to provide 

2e(0 =-gg (x(t)). ~e(t) 

a,l, 
X, = d~(ro; X o, #) and S ( % )  = ~  (to; Xo,/~) 

These expressions are then inserted into the system (3.17) to compute more 
precisely elements of the periodic orbit by Eqs. (3.16). The iteration is 
carried on three or four times to obtain a sufficiently good approximation 
of X*, ~*. The advantage of the Newton method is its superconvergence. 
Independently of the stability of the periodic orbit, provided that the latter 
is not marginal, the initial error a is reduced to ~2~ after n iterations. This 
stability is given by the eigenvalues of the integrated linearized system 

aO 
~(~*) =~-~ (~*; x*, a) 



170 Gaspard and Wang 

The periodic orbit of a nearby parameter value is computed by 
extrapolation with a linear increment in the parameter # ~ # + d#. The 
linear variations dX, dr, and d# then satisfy a linear system similar to 
(3.17), which depends, furthermore, on (c~/@)(r*;  X*, #). This system is 
solved to obtain the variations (dX, dr, d/~) either for a given parameter 
increment d/~ if &/d~ < 1, or for a given increment of the period dr if 
dr/dl~ > 1. 

The integration of the 15 variables (0O, c~r ~?~/c?#) was performed 
by a variable-order, variable-step Gear method of the NAG library t2~ to 
handle the stiffness of the differential equation system. 

4. H O M O C L I N I C  T A N G E N C Y  TO THE B A S I C  CYCLE 

The aforementioned method was used to follow the mixed-mode 
periodic orbits P,, as well as the basic periodic orbit C to which is 
associated the tangent homoclinic orbit in the model (3.6)-(3.8). 

The sequence of the mixed-mode oscillations below T O ~_ 589.9966 is 
drawn in Fig. 10 in comparison with the basic cycle. The bifurcation 
diagram of their period versus the ambient temperature To is presented in 
Fig. 11 up to the oscillation P7. The bifurcation diagram of the oscillations 
from P3 to Pl0 is shown in a logarithmic scale in Fig. 12, which proves the 
exponential accumulation at the critical temperature To~. This critical 
temperature was determined by its localization in the interval between 
two temperatures To of occurrence of the oscillations Pl9 and P2o and is 
given by 

ToH=589.459801925_+15x10 9 (4.1) 

where the homoclinic tangency to the basic cycle C occurs. 
The oscillations with n even occur for T o > Toll, those with n odd for 

T o <ToH. The origin of this feature is in the negative sign of the Liapunov 
number 2, of the basic cycle C. In fact, one finds 

r~,(~)[ ~ 10 8 (4.2) 

2u(#) = -2.56599523 + 3.15876~ - 2.0961~ 2 (4.3) 

rc(#)  = 0.9641756315 - 0.06426701~ + 0.0080859~ 2 (4.4) 

where/~ = T o -  Ton varies between -0 .06  and 0.04. 
The Liapunov number 2,(0) and the period re(0) govern the scaling 

properties of the bifurcation diagram of Figs. 11 and 12, as shown in 
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Table II. In this table (p)~ [resp. (y)~] denotes the boundary of the 
periodic window P,  that is the closest to (resp. the farthest from) the 
homoclinic tangency # = 0 and r~(P~) is the period of the oscillation P,, at 
(#)'. = 2.3 [;~.(0)] -" 

The oscillations P1 and P2 differ from the oscillations P3 ,  P4,. . . .  

Indeed, P~ undergoes a tangent bifurcation localized by the arrow in 

TEMPERATURE 

589.4598 

PERIOD 

,g84t76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

589,8000 3,82384E Pz 

589.4850 5.779433 P4 

589.4700 7,67332~ Pe 

5 8 9 . 4 6 1 3  9.604748 ~s 

58g.4600 1~.533053 Pro 

589.4595 tO.SR3601 P~ 

58g,4573 B,649694 ~7 

589.4500 6.741533 P5 

589.4200 4 .847955 P3 

589.1000 2,902106 Pz 

. = =  

.S 

4 

1 

1 

Fig. 10. The sequence of mixed-mode oscillations of the thermokinetic model (3.6)-(3.8). 
The variations in the relative temperature u = ( T  T o ) / T  o are represented. Displayed below is 
the unstable basic periodic orbit C at the homoclinic tangency Tom 
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Fig. 11. However, no such tangent bifurcation occurs for all the other 
oscillations P, ,  which remain superstable within the precision of the 
integration. Furthermore, the maximum temperature of the ignition peak 
of P2  decreases as the boundary (#)2 is approached, although it remains 
roughly constant for P3, P4,.--. 

The approach of the boundary (~)2 is characterized by a thickening of 
the cool flame temperature oscillation two peaks before the ignition peak 
and with the deepening of the oscillation in the fuel concentration Y, as 
shown in Fig. 13b for Ps. All the mixed-mode oscillations P,  from P3 with 
n increasing are accounted for by a homoclinic tangency occurring at Ton 
and associated with the basic cool flame oscillation C. 

Period 

P, 

P~ 

61 

J 

. . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  

585.8 586. 589. 

PO 

~__J P. 

5 

P2 J 

% 
s89.s' sgo. ' 

Fig. 11. Bifurcation diagram of the mixed-mode oscillations Pn of the period versus the 
ambient temperature To. Here Ton is the temperature of the homoclinic tangency. The curve 
C is the period of the basic cycle C. The arrow on the curve of P~ denotes the locus of a 
tangent bifurcation. The curve PI above the arrow corresponds to a saddle periodic orbit Pt.  
All the other periodic orbits P~ are stable with two Liapunov numbers vanishing within the 
precision of the computation. The basic cycle C is a saddle. 
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Fig. 12. Bifurcation diagram of the mixed-mode oscillations from P3 to P~0 of the period 
versus the decimal logarithm of the difference ]T 0-  ToH], with To, given by (4.1). The bifur- 
cation diagram computed from the Poincar~ mapping is superposed in dots. 

The homoclinicity is revealed by the numerical construction of a 
Poincar6 mapping. The section plane chosen is 

X =  0.022 (4.5) 

transverse to the cycle C. 
The local stable and unstable manifolds of the cycle C were computed. 

Several trajectories of the unstable manifold were then integrated up to the 
return in the section plane after a given time. Figure 14 depicts the time 
variation along a tangent homoclinic orbit occurring when the return 
belongs to the local stable manifold. The computat ion shows that all the 
different initial conditions near the cycle C are mapped on a single point 
within the precision ] 0  - 7  in the phase space, whereas the return time 
depends sharply on the initial condition on the local unstable manifold. 
The map T 1 is thus strongly contractive of the form (2.21). The map T1 is 
defined as the mapping from the section plane (4.5) with a return on itself 
at a time longer than 3.5. The coordinates x and y of a point in the section 
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a b 
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Fig. 13. The mixed-mode oscillation P5 near the boundaries (a) (#)~ and (b) (/~)~ compared 
with (c) the unstable basic cycle C, in the temperature u and the two concentrations X and Y. 
The oscillation shape in part (a) is the most  typical of the periodic window. 
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F ig .  13 (continued) 
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TEMPERATURE = 58g.459802 

INTEGRATION TIME = 4 .7g7125 

u 7,0 

t 

o 1 

Y 1.0 

o 1 

Fig. 14. The homoclinic orbit of the homoclinic tangency at /~=0, integrated from initial 
condition x* = 0, y* = 0.003 up to x* = 0.00000234, y* < 10 8 in the local coordinates (x, y) 
of the section plane X =  0.022. The whole homoclinic orbit converges to the basic cycle C in 
the past and the future. (Note that, since the flow is strongly contractive, all the various initial 
conditions are mapped onto a region of order 10 7 on the section plane. So the initial con- 
dition of the orbit of the unstable manifold where the tangency to the stable manifold occurs 
is undetermined within this precision. Unicity in the determination of the homoclinic orbit is 
not guaranteed, because the unstable manifold may be rolled on itself by the flow in a region 
smaller than 10-7.) 

822/48il-2-12 
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plane (4.5) denote its projections on directions tangent to the stable and 
unstable manifolds, respectively, of the basic cycle C. The stable and 
unstable directions are represented by unit vectors in the section plane 
(4.5). 

The different functions of the map T1 in (2.21) are then given by 

x*(#)  = 0.000002336 + 0.00000456# + 0.0003097y 2 (4.6) 

b(#) = -0.0185328 + 0.000688# (4.7) 

The computed return time function is shown in Fig. 15 and is fitted by 

P(P) + q(#) Yo r,(yo,/~) = (4.8) 
[yo  - s , ( ~ ) ]  ~' [ s 2 ( ~ ) -  y o ]  ~2 

with ~1 = 1/215, c~ 2 = 1/106 

p(#) = 4.424 - O.05bl (4.9) 

q(#) = --21.7 + 42# -- 130/.t 2 (4.10) 

s~ (#) = 0.00065963 + 0.0024348# + 0.004171 #2 (4.11 ) 

s2(#) = 0.00380534 + 0.0043385/~ + 0.001891# 2 (4.12) 

Return t ime To= 5 8 9 . 4 5 9 7 5  

5,2.  

5,0_ 

4 ,8 .  

4 ,6  

f 

Y~ Yo 
I 

' .o61 .oo2 .oo3 .oog 

Fig. 15. The re turn  t ime versus the ini t ia l  condi t ion  Yo on the local uns tab le  manifold,  at  
T o = 589.45975, in the case co r re spond ing  to the homoc l in ic  orbi t  of Fig. 14. Fo r  different 
pa ramete r  values the funct ion is similar ,  but  with shifted boundar i e s  s~ and  s2. 
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defined on 

- 0.06 ~< # ~< 0.04 

yl(t~)=sl(l~t)+2xlO-7<~yo<~S2(l~)-4xlO s = y2(/~ ) (4.13) 

Its dependence on x o is negligible. 
This specific form with two divergences at Sl(#) and s2(/~) was chosen 

empirically because the numerical return time seems to diverge at the 
boundaries of its domain of definition. We do not know the mechanism of 
the origin of these apparent divergences, so we do not know whether they 
are exact or not. However, we have observed no saturation behavior. The 
exponents cq and 72 were chosen within an uncertainty interval of 10% by 
fitting a straight line in the log-log plot of the return time function versus 
lY0-Yi(~)l, i =  1, 2. Up to a certain degree the choice of the form of 
rl(Yo, #) and of 71 and 72 is arbitrary, but we present precise fitted 
parameters and functions without errors because we intend to use them as 
a definite submodel. 

The characteristic shape of the return time function appears in the 
bifurcation diagram in Fig. 12, because the period of the periodic orbit Pn 
depends on it by Eq. (2.24) As/z tends to (#)1 n [resp. (/~)2], Yo of Eq. (2.23) 
a p p r o a c h e s  y l ( / / )  [resp. Y2(#)]- In Fig. 12 the superposed dots give the 
bifurcation diagram of the fixed points of the maps T~-3oTI  with 
n = 3, 4, 5 ..... 10 corresponding to the periodic orbits Pn .  4 

Near the boundaries (#)~, the agreement is very good. The dis- 
crepancy occurring near the boundaries (/~)] is due to the aforementioned 
thickening of one of the cool flame peaks (see Fig. 13b). This behavior for- 
ces the periodic orbit to leave the domain where the map To has the simple 
linear form (2.6)-(2.9). A nonlinear form should take account of this 
feature, as shown in Section 5. The discrepancy is not present on the period 
of P3 because it is a fixed point of T1 alone. 

In Fig. 12, the periodic windows are juxtaposed, leaving no visible 
room to any further dynamical behaviors. Nevertheless, we found a gap 
between the windows P3 and P5 (see Table II) filled by a very small 
periodic window P~, which differs from P7 by the existence of a thick, 
fourth cool flame peak in the period. This feature of the shape means that 
the oscillation P:~ does not belong to the fixed points of T~oTo k. Indeed, 
there exists another homoclinic orbit, which is displayed in Fig. 16, with 
another map T'I with a longer return time, but which is defined only on a 
very small domain 

0.00380534 < Yo < 0.00380555 (4.14) 

4 The use of n = 3 supposes that x~(#)-~ 0, which is satisfied here [see (4.6)]. 
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The smallness of this domain with respect to (4.13) explains why a family 
of periodic orbits derivating from T'I has not been observed numerically. 
However, this fact shows that the classification of the mixed-mode 
oscillations into a sequence P,  is too poor to describe the trajectories of the 
thermokinetic system, because it does not distinguish thick from thin cool 
flame oscillations, so that we should enlarge the classification scheme. 

TEMPERATURE = 5 8 9 . 4 5 9 8 0 2  

INTEGRATION TIME = "7 .0940"74 

U 7 . 0  

0 1 

0 1 

0 1 

Fig. 16. The homoclinic orbit 103/0 ~176 of the homoclinic tangency of the second kind occur- 
ring at # = 0, computed from initial condition x~ = 0, y* = 0.00380543 up to x* = 0.00000234, 
y~'< 10 .8 in the local coordinates (x, y) of the section plane X=0.022. This homoclinic 
tangency is at the origin of the oscillation P:~ observed between P3 and Ps- 
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5. H O M O C L I N I C  T A N G E N C Y  TO A C A N T O R  SET 
OF T R A J E C T O R I E S  

Our goal in this section is to understand the complete bifurcation 
sequence in region III of oscillations of mixed cool flame and ignition 
oscillations, which is presented in Table III. 

5.1. Cool Flame and Ignit ion Subdynamics  

As for the sequence of mixed-mode oscillations analyzed in Section 4, 
two mappings are required, describing, respectively, the cool flame 
subdynamics, denoted here by TcF (CF for cool flame), and the ignition 
subdynamics, denoted here by T~ (I for ignition). They are replacing T o 
and TI, respectively. 

As presented in Section 3.1, we know that a (nonattracting) Smale 
horseshoe exists in the cool flame subdynamics in region III. This Smale 
horseshoe constitutes a hyperbolic repellor. Its existence is proved here, but 
we shall not study its creation. The presence of this horseshoe is related to 
the observation in the preceding section that there exist two types of cool 
flame peaks: thin and thick peaks as they appear in the temperature 
signal. Compare Figs. 9 and 13. These features suggest that the map Tcv 
describing the cool flame subdynamics is indeed nonlinear of logistic type 
rather than linear as was To. 

The maps Tcv with T~ were constructed numerically for three values 
of the ambient temperature T 0. They are plotted in Figs. 17a, 18a, and 18b. 
The section plane is the same as in Section 4 [see Eqs. (4.5)] and y is the 
coordinate on a unit vector in the section plane tangent to the unstable 
manifold of the basic cycle C. Due to the strong contractivity of the ther- 
mochemical dynamics, the map Tcv appears to be quasi-one-dimensional 
and the map T~ pointlike, because ignition is even more contractive. 

As mentioned earlier, the map Tcv below the value y* is of logistic 
type. But the cool flame system is a hyperbolic repellor because the top of 
the function is outside the definition interval of the 1D map Tcv bounded 
by the threshold y*. The trajectories will then leave this definition interval 
through an interval contained in the interval (b', b). The system then 
undergoes an ignition peak and the trajectories are reinjected in the 
definition domain of Tcv by the map T~ at the right in Figs. 17a, 18a, and 
18b. Let us represent the map Tcv, which is two-dimensional before any 
approximation, by the equations 

I Y' = FcF(Y, x; To) 

TeE x ' = G c v ( Y ,  x; To) (x, y ) f A o w A  1 (5.1) 

t' = t + ~cv(Y, x; To) 

where Ao w A~ is the definition domain of Tcv. 



Table  III. Numer ica l  Values of the  Observed M i x e d - M o d e  Osci l lat ions 
in Region III at a Pressure near 553 m m  Hg a 

Ambien t  t empera tu re  T O N Type  

564 -585.8 0 (region II) (1) 
585.8211093 -589.2919558 1 (0I) = P1 
589.2919577 589.4281664 3 (010I) - (031) = P3 
589.4281674 -589.4281675 7 (03103I) = P:7 
589.4281678 -589.4544529 5 (0310I) - (05I) = P5 
589.4544534 -589.4589649 7 (0510/) - (071) = P7 
589.4589657 -589.4596739 9 (07101) - (091) = P9 
589.45968 -589.45978 11 (09101.) - (01~I) = P11 
589.459785 -589.459795 13 (011101) - (0131) = P13 
589.4598 -589.459801 15 (013101) - (0151) = P15 
589.4598017 -589.4598018 17 (015101.) - (0171) = P17 
589.45980186 -589.45980191 19 (01710I) - (019I) = PI9 

589.45980194 20 (02~ = P2o 
589.459802 18 (0181.) - P18 

589.4598022 - 589.459803 16 ( 0161) -  (014101.) = P16 
589.459807 14 (0141.) - P14 
589.45981 12 (0121) = P12 

589.4598520 -589.4601312 10 (01~ _ (08101) = Plo 
589.4601319 -589.4620057 8 (0a/) - (06101) - P8 
589.4620066 -589.4754037 6 (061) - (0410I) = P6 
589.4754054 -589.618178 4 (041.) - (02101) = P4 
589.6182911 -589.9965818 2 (02I) = P 2  

589.99685 22 (1021019) 
589.997 12 (/02109 ) 
589.99749 10 (10210510) 
589.9975 12 (/02105103 ) 

589.9975025 -589.997504 14 (102105105 ) 
589.9975045 589.9975048 16 (102105107 ) 

589.9975049 20 (102105107103 ) 
589.997505 18 (102105109) 
589.99750515 20 (1021051011 ) 
589.99750525 22 (1021051013 ) 
589.99750528 24 (1021051015 ) 

589.9975053 589.99750531 26 (1.021051017 ) 
589.99750533 37 (/0Zl051028) 
589.99750534 29 (1021051020 ) 
589.99750535 27 (I021051018) 

589.997505355-589.997505365 25 (1021051016 ) 
589.99750537 -589.99750539 23 (1021051014 ) 

589.9975054 21 (1021051012) 
589.99750545 -589.9975055 19 (10210510 l~ ) 
589.997508 589.9977 8 (102105 ) 
589.999 -590  6 (/02103) 
590.01 590.1226 4 (/0210) (104) 

590.1227 21 (I04101~ 
590.123 46 (/041029109) 
590.125 12 (104107 ) 
590.126 14 (/0410510 ~) 
590.14 oo (region IV) (0) 

a N denotes  the n u m b e r  of cool flame peaks  in the period. The  type is represented by the sym- 
bols of  the a lphabe t  {0, 1, I}. 
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Fig. 17. (a) Return mapping in the section plane ) = 0 . 0 2 2  at the ambient temperature 
T O = 590.0. Here y is the coordinate of the projection of the intersection point onto the axis 
tangent to the unstable manifold of the basic cycle. The mapping is composed of two maps 
TCF and T~. Point p is the image by Tcv of the reinjection point of T~. The coordinate y* 
separates the definition domains of TcF and T~. The y~ is the coordinate of the maximum of 
the map Tcv , and the coordinate y~=f~(y~)  separates the domains Ao and 31 [see 
eq. (5.10)]. The construction of the points a, b, b', c, and d shows that the invariant set of the 
map TcF is uncountable by Theorem 5.1. (b) Return time function under the same conditions 
as before. T B is the return time at the coordinate ye and separates the return times of cool 
flame peaks of type 0 from those of type 1. Tp is the return time during Tcv of the reinjection 
point of T~. At the right of y* is the return time during T~ alone. (c) The unstable manifold 
HI, of the basic cycle under the same conditions as before in the (x, y) plane. The y (resp. x) 
axis is tangent to the unstable (resp. stable) manifold of the basic cycle crossing the section 
plane at x = y = 0 .  The point P~ is the reinjection point by the map T~. (d) Schematic 
representation of the Smale horseshoe under the same conditions as before in the (x, y) plane. 
A0, 3 j ,  and Aj are the three definition domains of the mappings of symbols 0, i, and L The 
line L is the preimage of the line Im L which cuts Tcv(AouA~) in the domain Az near the 
maximum of the horseshoe. The line separating A 0 and A~ is the preimage of the intersection 
of the line L with TcF(A 0 • 3 l). 
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Fig. 17 (continued) 

Figure 17c displays the geometry in the section plane (4.5) obtained 
numerically. The Smale horseshoe is quasi-one-dimensional confined near 
the unstable manifold W, of the basic cycle C. It is represented 
schematically in Fig. 17d. The trajectories reaching the domain A~ will 
undergo ignition, which reinjects all the trajectories in a small pointlike 
domain denoted by Im A~ in Fig. 17d and P~ in Fig. 17c. The equations for 
T~ would thus be 

I 
x' = x~(To) (x, y ) E J ~  

T~ y' y~(To) (x i ,  . ,vi)@A0kJA1 
(5.2) 

t' t+~i(y,  x; To) 

Transversely, the Smale horseshoe is strongly contractive. [See the 
value of the stable eigenvalue 2, of the basic cycle C in Eq. (4.2).] So the 
image of P~ by Tcv is quasi on the unstable manifold W, as well as its next 
iterations by Tcv. If W, has the equation 

W.: x= w(y; To) (5.3) 
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Fig. 18. Return mappings in the section plane X = 0 . 0 2 2  at (a) the ambient temperature 
To = 589.3 and (b) T o = 590.123. The same notations are used as in Fig. 17a. 
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then the cool flame subdynamics may be approximated to a very good 
precision by the restriction of the 2D map Tcv to the unstable manifold W, 
of the basic cycle C. More precisely, the system is reduced to a 1D map of 
the following form defined on an interval: 

TCF" Y<Y* fv~, '=Fcv(y,w(y))=f(y) (5.4) 
( t  = t + ~ c ~ ( y ,  w(y) )  = t + O ~ ( y )  

f Y' = Fcv(yl, xl) = p (5.5) 
Tc~-oT~ y*<y ~}'=t+z~(y,w(y))+rc~(y~,x~)=t+O,(y) 

with p < y*, where we did not write explicitly the parameter dependence on 
T O . Because P~ is away from W,, its image by Tcv is away from the 
funct ionf(y)  of Tcv: it is represented by the point p in Figs. 17a, 18a, and 
18b. The next iterations of the point p follow the 1D dynamics o f f ( y )  at 
the approximation of the figures. The complete dynamical system is the 
composition of the two maps given by Eqs. (5.4) and (5.5). 

The transition between the regions IV and II! at temperature (To)m_~v 
can be understood as the transition where the maximum of the 1D 
map TcF at Yc of value f (Yc) exceeds the threshold y* that limits the 
definition domain of TCF. Above (To)III_IV , the cool flame system Tcv 
remains attracting and is chaotic, as in Fig. 9b, becausef(yc)< y*. Below 
(T0)m_lv, the top of Tcv exceeds the threshold y* and ignition occurs 
repetitively after each escape from the hyperbolic repellor formed by the 
cool flame subdynamics of Tcv. As observed in Figs. 17a and 18, the inter- 
val of escape between b' and b grows as the parameter T o decreases, so that 
escape is more and more important. In Fig. 18a at T o = 589.3, the dynamics 
is then governed principally by the linear behavior near the basic cycle C. 
This is why the low-ambient-temperature part of the bifurcation sequence 
of mixed-mode oscillations is explained in its main features by a linear map 
T o rather than the nonlinear map Tcv. The discrepancy between the 
prediction of the linear model with To and the numerical results in Fig. 12 
noted in Section 4 is now understood as due to the remaining nonlinearity 
of the function f ( y )  near the threshold y*. 

Let us now turn to the understanding of the bifurcation sequence of 
mixed-mode oscillations. 

5.2. P i e c e w i s e  Linear 1D M a p  M o d e l  

To illustrate the bifurcation phenomenon, we consider the following 
piecewise linear model 



188  G a s p a r d  and  W a n g  

Tcv: y' = py, 0 <~ y <~ 1/2 symbol 0 

y ' = p ( 1 - y ) ,  1/2<y~< 1: symbol 1 

with p > 2  (5.6) 

T~ : y'  = y~ = #, 1 < y: symbol I 

with 0 ~< # ~< 1 

The map is drawn in Fig. 19. The invariant set of the map Toy is described 
by a symbolic dynamics of alphabet {0, 1 }. The coordinate y[R] of the 
point 

R~-(D0(DI(DZ(D 3 .... with coi=0 or 1; i = 0 ,  1, 2, 3 .... 

of the invariant set admits the following p-adic expansion: 

y[R] =COo+CO~ P +co2 p2 ~-co3 p3 q- �9 (5.7) 

Because p >  2, the invariant set is a hyperbolic repellor of Cantor type 
characterized by a Hausdorff dimension D = In 2/ln p of zero Lebesgue 

Fig. 19. 

Yn§ �9 

/ 

/u . . . . . . . . . .  t -'- . . . . . . . . . .  \ 

o . . . . . .  

0 1/2 
~o ~1 

(101) 
( 111 )  

(1 t) 

(or) 

(01 I) 
(0m) 

1 

The tentlike system of equations (5.6) with some periodic windows represented in 
the phase space. 
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measure on the interval [0, 11. So almost all the points of the unit interval 
leave it after some iterations of Tcv to be mapped by TI on y =/~. Almost 
surely, ~ is not a point of the Cantor set and the orbit is then periodic and 
superstable because T~ is pointlike. These periodic orbits are denoted 
(o91~o2 .-.re,I),  where the symbols ~oi take the values 0 or 1 according to 
the interval [0, 1/2] or 11/2, 1] visited in [0, 11. The symbol/corresponds 
to a passage by T~. The bracket denotes the repetition of the symbolic 
pattern. Clearly, there exists a countable infinity of periodic windows 
corresponding to these superstable mixed-mode periodic orbits. 

The bifurcations between these periodic orbits occur when # reaches a 
point y[R] of the Cantor set. The complete description of the bifurcations 
of the periodic attractors is easy in this particular model. Consider the set 
of all the finite sequences S of symbols 0 and 1 with the null sequence ~b 
composed of no symbol. If S=~ooO91 ...~o~, let us define the parity of S as 
the parity of Xti=o ~oi and ~b has the even parity. Equation (5.7) implies that 

y[SOlO~]< y[SllO ~] i fS i seven  

y[SllO~]< y[SOlO ~] i f S i s o d d  

Consequently, with the notation 

ms= (y[SOlO :~ ] + y[SllO~ 

by following the preimages of the interval (l/p, 1 - l/p), we obtain the 
periodic windows as follows: 

If S is even, 

(SO1) ~ (y[S010~] ,  ms] 

(SII) ~ (ms, y[SllO w]) 

If S is odd, 
(SII) ~ ( y [ S l l 0 ~ ] ,  ms) 

(s0I) e (ms, yl-S010~ ]) 

where the intervals belong to the/t-parameter space. If the map TCF (resp. 
TI) has a return time ZCF (resp. q),  the period of (R1) is 

I'CCF +" q 

if ! is the length of the finite sequence R. From (5.7), the periodic window 
of this orbit has a width 
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Fig. 20. Bifurcation diagram of the periodic attractors of the dynamical system (5.6) with 
the parameter p - 2.5, zcv = 1, and T~ = 1. The period T versus the parameter value/~ is drawn 
on a logarithmic scale. The Cantor set of the bifurcation parameter values appears from the 
vertical asymptotes of the diagram. 

in the/~-parameter  space. Figure 20 depicts the bifurcation diagram of the 
period versus the parameter.  

There exists an infinite number  of homoclinic tangencies toward which 
a sequence of periodic windows of increasing period accumulates. If  IR is 
the homoclinic tangency occurr ing at y [ R ]  and if [R]z  denotes the finite 
sequence containing the l first symbols of  the infinite sequence R, then the 
window of the periodic orbit  ( [ R ] l I )  is in a ne ighborhood  of y [ R ]  of 
diameter of order  p - t  and on the side of y [ R ]  determinated according to 
the parity of [ R ] t _  ~. 

Fur thermore ,  a countable  set of  homoclinic tangencies may  be 
associated to a single periodic orbit  of the basic invariant set. Let P and S 
be two finite sequences of 0 and 1; then all the homoclinic tangencies ISP  ~176 
are associated to the same periodic orbit  (P), but occur at different 
parameter  values given by y [ S P ~ ] .  The sequence of periodic windows 
accumulat ing at a homoclinic  tangency ISP  ~ is less observable as the 
period l of  (P) increases, because the rate of accumulat ion goes like lip t. 
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The homoclinic tangencies are uncountable and lie among the coun- 
table set of periodic windows. These results illustrate the complexity of the 
bifurcations of mixed-mode periodic attractors in such systems. 

5.3. The Cantor-L ike Hyperbol ic  Repel lor  of the Cool Flame 
Subdynamics 

We now show that the invariant set of the cool flame subdynamics of 
the thermokinetic model (3.1) (3.8) is of the Cantor type, like the 
preceding piecewise linear model. The answer is provided by a theorem of 
Li and Yorke, (31) which can be generalized to our case. 

Consider the function f ( y )  of the map Tcv given by Eq. (5.4) and 
Figs. 17a and 18. Yc denotes the coordinate of the maximum o f f ( y ) .  We 
define fA on y < Yc as the part o f f  that is strictly increasing, and .f8 on 
Yc <<. Y < Y* as the part o f f  that is strictly decreasing, and then the inter- 
vals JA and ,.C a by 

~ = { y e J :  y < f A l ( y * ) }  

J~={yEJ:  ful(y*)< y< y *} 

In Figs. 17a, 18a, and 18b we construct the points a, b, b', c, and d such 
that the assumptions of the following theorem are satisfied. 

T h e o r e m  5.1. Let the func t ion f (y )  be continuous on the intervals 
.~'A and .-r Suppose there exist a point a such that b =f(a),  c =f2(a ) ,  and 
d=f3(a) and a point b' such that c=f(b') ,  with a, b', d~=CA and b, c 6,,r 
and which satisfy 

d<~a<b' < b < c  

Then f has an uncountable invariant set /t ~ ,~r w .JR. 
We refer the reader to the paper of Li and Yorke for a proof of this 

theoremJ 31) Let us remark that the uncountable set/1 of the theorem of Li 
and Yorke does not contain all the trajectories of the maximal invariant set 
A of Tcv,  but the theorem implies that the maximal invariant set A 
between the points d and c, which contains /1, is uncountable and of 
Cantor type. 

Furthermore, we remark that I.f'l-1/2 is convex, so that the Schwar- 
zian derivative of f is negative on y <  y*: 

) 3 2 

ty  2 < 0 (5.8) 
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Since the maximum f(Yc) exceeds the upper boundary y* of the definition 
domain of y, this property implies that the map f is hyperbolic on its 
invariant Cantor set A in the following sense. There exist a K >  0 and a 

> 1 such that 

[(f~)' (Y)I > KT~ (5.9) 

for all n>~0 and for all yeA,  as proved by van Strien. (36) As a con- 
sequence, the invariant Cantor set A is structurally stable and does not 
undergo bifurcations. It thus forms a hyperbolic repellor. 

The invariant set A can be described by a symbolic dynamics in the 
following way. We partition the phase space below y* into two domains, 

Ao = { y e J :  y < f ~ l ( y c )  } 
Al = {yeJ :  f ~'(yc)< y <  y*} 

(5.m) 

This particular choice is due to two reasons. 
On one hand the difference between thin (symbol 0) and thick (sym- 

bol 1 ) cool flame peaks occurs in the return time of the map Tcv displayed 
in Fig. 17b. The return time sharply increases only near y* for y < y*, so 
that even the basic cycle at y = 0 appears as a thin cool flame peak. Our 
choice corresponds to a partition of the return time at the time T8 in 
Fig. 17b. 5 

On the other hand, due to the particular shape of the map Tcv,  it 
does not have a second fixed point like the tentlike map TcF of Section 5.2 
(see Fig. 19). This feature is taken into account if we impose on the sym- 
bolic dynamics the condition that the symbol 1 is always followed by the 
symbol 0 and if we limit our symbolic description to the trajectories of the 
invariant set A contained between d and c. 

Moreover, the following result holds concerning the order in which the 
points of A occur on the interval y < y*. We define (37) 

On(y) = { _  +1 i f F + l  P reserves the ~176 near y 
1 i f f  n + 1 reverses the orientation near y 

If the sequences 0 ( y ) =  { n(Y)},=o are ordered lexicographically, then we 
have the following result. (37) 

5 The form of the return time functions of TCF and T~ is at the origin of the sharp increase of 
the period near the boundaries of the periodic windows observed in Section 4 (see Figs. 11, 
12, and 15). 
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Proposition 5.2. I f y < y ' ( < y * ) , t h e n 0 ( y ) ~ > 0 ( y ' ) .  

This proposition proves that the order of the points of A on the inter- 
val J is universal for the 1D iterations f (y ) ,  i.e., identical for all the values 
of the parameter To in Figs. 17a and 18. The order of the invariant set A is 
governed by a p-adic expansion similar to Eq. (5.7) if the symbolic 
dynamics is correctly identified. 

According to the work of Mira, Holmes, and others, (37 39) we expect 
that the order of the stable manifolds of the invariant set of the 2D map 
Toy of Eqs. (5.1), which is only quasi-lD, is close to the order of the 
invariant set of the 1D mappingf(y) .  But there exists a scale where the 1D 
universal order breaks. 137 39) This scale is finer if the map Tcv is closer to a 
1D mapping. However, we expect that the hyperbolicity of the invariant set 
will persist for the 2D map Tcv. 

Numerical computation reveals that the function f ( y )  and the return 
time have a vertical asymptote at y = y *  (see Figs. 17a and 17b). This 
mechanism is unknown to us, so that the function f ( y )  is undefined in a 
very small domain 

y* - Ay <~ y <~ y* + Ay 

with lay[ < 6 • 10 8 for all To. As a consequence, our knowledge of the 
bifurcation sequence is limited. With the given precision, the width of the 
largest undefined window in the To-parameter space is of order 10 5. The 
unknown fraction of the To-parameter space is then of order 1 0  - 4  . 

5.4. Bifurcation Sequence of Mixed-Mode Oscillations 

We come back to the complete dynamical system composed of both 
Tcv and T~. We add to the partition (5.10) into Ao and A1 the following 
domain 

A~= {yeJ :y*<y}  (5.11) 

A symbol of the alphabet {0, 1, I} is assigned to the trajectory at a passage 
via the corresponding domain {Ao, A l, A~}. The transition matrix of the 
symbolic dynamics is then the following (see Figs. 17a and 18): 

0 1 I 

1 1  

1 0 0 

I 0 0 

(5.!2) 

822/48/1-2-13 
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Thus, the stable trajectories of the system are superstable periodic orbits. 
They are classified according to their type (IR), where R is a finite sequence 
of 0 and 1 compatible with (5.12). The type of the periodic windows we 
observed in the thermokinetic model is presented in the last column in 
Table III. 

a b 

TEMPERATURE = 5 8 9 . 9 9 6 8 4 4  

I N T E r ; R A T I O N  T I M E  = 7 , 8 2 8 4 g g  

u 7.0 

0 1 

0 1 

Y 1 . 0  

0 t 

TEMPERATURE = 5 9 0 . 1 2 3 0 0 8  

[NTEGRATION TIME = 7 .767134 

U I 7.0 

I 

0 

X t .1 

0 1 

Y 1.0 

0 1 

Fig. 21. (a) The homoctinic orbit of the homoclinic tangency occurring at T o = 589.996844 
of type I0210 ~176 computed from initial condition x~ '=0 ,  y*  =0 .005  up to x * = 1 2 x  10 -7, 
y * < 2 x  10 .7  in the local coordinates (x, y)  of the section plane J(=0.022.  (b) Another 
homoclinic orbit at To=  590.123008 of type / 0 4 1 0  ~176 computed from initial condition x~' = 0 ,  
y~' = 0.0094 up to x*  = 10-6, y .  < 2 x 10-7. 
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\ 
L 

Fig. 22. Geometry of the reinjection mechanism to a saddle-focus fixed point of eigenvalues 
(p +_ ko, 2), Ip/21 < 1, in the strongly contractive case. L is the line of the reinjection points on 
the two-dimensional unstable manifold as the parameter is varied. 

As pred ic ted  by the homocl in ic  tangency  to a Can to r - l ike  invar ian t  
set, several  homocl in ic  tangencies  to the basic  cycle C are expected to be 
e m b e d d e d  in the b i furca t ion  sequence (see Sect ion 5.2). Two such examples  
are shown in Fig. 21. Table  IV summar izes  the homocl in ic  tangencies  we 
have observed  in the the rmokine t i c  model ,  e i ther  by direct  numer ica l  com-  

pu ta t ion  as those  of Figs. 14, 16, and  21, or  by inspect ion  of Table  III. 
Homoc l in ic  tangencies  to other ,  more  compl i ca t ed  cycles of the invar ian t  
set have not  been observed,  for the fol lowing reason.  

Accord ing  to Eq. (2.19), the width  of their  per iodic  windows shr inks  
like (~u)-2", where ~ is the uns tab le  e igenvalue of  the co r r e spond ing  basic  

Table  IV. The Observed  Hornoc l in ic  Tangenc ies  of  the  Ther rnok ine t ic  M o d e l  
of  Pressure near  553 m m  Hg ~ 

589.459801925 _+ 15 x 10 9 
589.459801925 • 15 x 1 0  - 9  

589.996843934! 3 x 10 7 
589.99750532 + 1 x 10 -8 
590.12300821 ! 2xlO -7 

1010 ~ 
103/0 ~176 (or 1010/0 ~) 

102100o 
I0210510 ~ 
/0410 ~~ (or/021010 ~~ 

a All are associated to the basic cool flame cycle. 
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cycle. Since all the cycles different from the fixed point y = 0 of Tcv have 
necessarily a passage via the domain A1 where the slope is very large, so is 
2u and the corresponding periodic windows are extremely small. 

The order of the periodic windows in the bifurcation sequence depends 
on the relative shift of the reinjection point p of Tcv o TI with respect to the 
invariant set A of Tcv.  We observe in Figs. 17a and 18 that the point p is 
always contained between the points b = f(a) and c = f(b) on the y axis. As 
the parameter  T o increases, the point p decreases and then increases with 
respect to the points b and c, as seen in figs. 17a and 18. The order of the 
periodic windows is thus a complicated function. The exact knowledge of 
the relative shift of p with respect to the invariant set A would explain in 
detail the order of the bifurcation sequence. However, we are confronted by 
practical limits because the thermokinetic model we studied is a 3D stiff 
differential equation system. Nevertheless, the observation of a horseshoe in 
the cool flame subdynamics with a homoclinic tangency due to the ignition 
subdynamics already gives an understanding of the origin of complexity in 
the bifurcation sequence as well as its organization rules. 

6. C O N C L U S I O N S  

We have seen that homoclinicity is important  to an understanding of 
the bifurcation sequences of mixed-mode oscillations as well as chaotic 
behaviors. The concept of homoclinic orbit provides a classification of the 
various bifurcation sequences according to the properties of the basic 
hyperbolic invariant set: a fixed point, a limit cycle, a torus, a quasirandom 
set. Furthermore,  generalizations to higher dimensions are possible. 

Let us comment  on the disappearance of chaotic behaviors in the 
region I I I  below the scale 10 -7 in the phase space. As discussed in Sec- 
tion 2, the reason is that the dynamics in the phase space is strongly con- 
tractive with a passage through a quasipointlike region, when ignition 
occurs. This is not the case in the cool flame regime, where chaos does exist 
and in fact provides the basic invariant set to which homoclinic tangencies 
are realized. The Belousov-Zhabotinskii  reaction does not have the very 
stiff dependence on the temperature as in a thermokinetic combustion 
system and is thus more likely to sustain chaotic behaviors as revealed by 
experiments or in models. 

Some comments are now in order on the comparison of the bifur- 
cation sequence of this thermokinetic model to those revealed by 
experiments on acetaldehyde combustion, where a sequence 
{P1, P2, P3, P4, P5} in simple order has been observed and where the 
existence domain of the mixed-mode oscillations is larger than in the ther- 
mokinetic model (3.1)-(3.5)3 6,v} In a three-variable model, such a sequence 
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could be generated by a homoclinic tangency to a periodic orbit with both 
Liapunov numbers 2u, 2, positive. However, we believe that this possibility 
has to be excluded. Indeed, the branch of the cool flame oscillations can 
become unstable and acquire a positive Liapunov number 2u only by a 
tangent bifurcation in three-dimensional systems. But the branch would be 
folded with a low-temperature bound and no mixed-mode oscillation 
would exist below the low-temperature boundary of the cool flame 
oscillations, in contradiction with the observations. This incompatibility 
would no longer exist in a four-variable model, with three Liapunov num- 
bers 2,2u~2u2> 0 such that 12,1 < 1 < t2,~1 < 12u21 and 12,2uLI < 1 with 2u~>0. 
It is known that the Liapunov numbers relevant to the dynamics near the 
homoclinic orbit are always those close to the unit circle. 

Nevertheless, there remains another possibility within a three-variable 
model. Type I sequences of mixed-mode oscillations may be mimicked by a 
reinjection mechanism to a saddle-focus fixed point of eigenvalues 
(p _+ ico, 2) satisfying the Shil'nikov condition pp/2] < 1. In the general case, 
this mechanism would lead to a homoclinic orbit to the fixed point. (~5) But, 
since the flow near the reinjection loop is very strongly contractive, the 
unstable manifold will be virtually one-dimensional when it is reinjected 
back to the fixed point. By varying one parameter, the unstable manifold 
will then pass in the vicinity of the stable manifold without being able to 
include it to form a homoclinic orbit. Therefore, an incomplete bifurcation 
sequence of mixed-mode oscillations of the type {PI, P2,..., Pn I,P,, 
P n  1 .. . . .  P2, P~ } with finite n can be generated (see Fig. 22). This type of 
incomplete bifurcation sequence and the sequence of type II discussed in 
Section 2 might both be realized in a single model; a transition between the 
two could also occur when the parameters change. In our simulations with 
pressure near 553 mm Hg, the eigenvalues of the fixed point do not satisfy 
the Shil'nikov condition, so that the complete type II sequence is realized 
rather than the incomplete type I sequence. 

The bifurcation sequences of type II should occur very naturally in 
real systems, since they are directly connected to the period doubling way 
of destabilizing the basic periodic orbit, which is quite generic. Therefore, 
this particular bifurcation sequence of mixed-mode periodic solutions 
predicted by the model (3.1)-(3.8), together with the period doubling 
sequence of the basic, cool-flame limit cycle, are expected to be found 
experimentally in hydrocarbon oxidation systems. 

To conclude, we can say that the homoclinic systems provide a general 
classification scheme of the universal behaviors of chemical systems far 
from equilibrium, while maintaining the relation between the abstract 1D 
or 2D mappings and the underlying differential equations for the 
physicochemical state variables. 
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